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Classical path and action are diachronic concepts in that they refer to many times 
instead of just one. The concept of a path is quantized into the concept of a 
propagation process between the initial preparation of and a measurement on a 
quantum system. A new quantum action is defined as a linear operator on the 
space of propagation processes, analogously to representing observables as linear 
operators on the ket and bra spaces. This quantization of paths and action results 
in a diachronic action principle: a variation of a dynamical propagation process 
is generated by the associated variation of the quantum action. The form of this 
principle is a candidate for the form of a dynamical principle of a theory without 
a classical time parameter. 

1. I N T R O D U C T I O N  

A central problem today is the synthesis o f  general relativity and quantum 
theory. In general relativity we require a theory to be independent o f  coordinate 
systems. As a first step to formulate a quantum theory that is independent 
o f  coordinates, we seek a quantum theory that is independent o f  pictures. 
Moreover,  we expect a quantum theory o f  space-time and matter that employs 
no classical coordinates. One of  the first questions then is, What  would 
dynamics  mean in the absence o f  classical time coordinates (Finkelstein, 
1972a, Section II)? We give a candidate for the form of  a dynamical  law of  
such a theory. 

We refer to the object o f  an experiment as "the quantum system." In 
Sections 2 and 3 we analyze quantum mechanical  experiments into modes 
o f  becoming,  namely direct acts by the experimenter on the quantum system 
and propagation of  it. Possible propagations are represented by elements o f  
the "process space." The sequence o f  direct acts o f  the experimenter during 
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an experiment is represented by an element of the dual "coprocess space." 
In order to represent "processes" (e.g., propagations) and "coprocesses" (e.g., 
sequences of  experimental acts) we use discretizations of  the time axis, similar 
to Feynman's  (1948) space-time approach to quantum mechanics. The process 
and coprocess spaces then are bundles whose fibers are tensor products of 
ket and bra spaces at various times. We assume no particular picture in that 
we do not identify ket (or bra) spaces at different times. 

The propagation tensor is a tensor product of  propagations over time 
steps which represents the p r o c e s s  of propagation rather completely. The 
contraction of this tensor is the picture-independent version of the usual 
evolution operator, which represents the net effect of a propagation (that is 
not interrupted by selective filter acts of the experimenter) on a transition 
amplitude. Feynman's  integral and Schwinger 's differential action principles 
refer to matrix elements of  the evolution operator. In Section 4 we use 
Feynman's  principle to derive a differential action principle for the quantum 
mechanical propagation tensor. The action in this diachronic principle is a 
linear operator on the process space. In Section 5 we derive the picture- 
independent form of Schwinger 's  action principle from our diachronic one, 
in order to illustrate the relationship between the two. 

Section 6 compares the three action principles and recalls the meaning 
that the present paper assigns to action in quantum theories, including theories 
without a classical time parameter. 

A point t of  the time axis T often will be denoted by its coordinate 
representation with respect to a particular time variable t: 

t ~ t : t '  (1.1) 

The statement that the variable t takes on the value t' is abbreviated as "t:t ' ." 

2. P I C T U R E - I N D E P E N D E N T  L A N G U A G E  OF Q U A N T U M  
M E C H A N I C S  

An experimenter starts and ends an experiment on a quantum system 
by certain operations he or she performs on that system. These two operations 
have, respectively, been called "preparation of the system in a state" and 
"test" by Giles (1970, Section 3), 2 "preparation" and "registration" by Ludwig 

2Giles points out that in an elementary experiment one first prepares a system in a state x and 
second applies a test a to this system. He represents the state x by a density operator D~ and 
the test a by a projector A~. For that representation one needs to employ the adjoint operator 
1. Giles does not consider time evolution. The experiments we consider involve time evolution 
and are assumed to be ideally sharp in that the preparations (input operations) and the tests 
(outtake operations) are maximally precise. Due to this precision the first and second stages 
can be represented by a ket and a bra, respectively, which does not require the t. The input 
and outtake operations and possible other acts of the experimenter between them we represent 
jointly by a coprocess tensor. We could represent imprecise acts of the experiment by associating 
probabilities with different coprocess tensors. 
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(1983, 1985), and "initial" and "final actions" or "input" and "outtake opera- 
tions" by Finkelstein (1995, w We follow Finkelstein in that sharp 
(maximally specified) input and outtake operations are represented by ele- 
ments of dual vector spaces. These elements are called ket and bra vectors, 
respectively. In contrast, most textbooks today say that kets and bras indis- 
criminately represent system "states," in the sense of states of being rather 
than modes of preparation. 

The simplest kind of experiment consists of an input and an outtake 
operation performed in immediate succession. This can be illustrated very 
well by the example of polarization experiments. It is well known that a 
Malus polarization experiment consists of two stages: two polarizers are held 
in a stream of photons, not just one. The input operation consists of holding 
the first polarizer in the photon stream. The input of the experiment consists 
of the photons that have passed through this polarizer. The outtake operation 
consists of holding the second polarizer in this stream of input photons. A 
photon detector is mounted behind the second polarizer. The outtake of the 
experiment includes the photons that pass the second polarizer, too. A transi- 
tion from the input to the outtake phase here means the passing of an input 
photon through the second polarizer. The transition probability is the ratio 
of the number of outtake to the number of input systems, here photons. 

The input operation at some time t is represented and denoted by a ket 
I qJ) in a complex vector space l(t), the outtake operation by a bra {q~t in the 
dual space I(t) D. The many-time input and outtake spaces, 

/ T =  U I(t) ~ I X  T 
t ~ T  

l~ = U l(t) ~  D • T (2.1) 
t ~ T  

are trivial fiber bundles (e.g., Nash and Sen, 1983) over the base space T 
with a common structure group G. The fibers I(tr) and I~ over an arbitrarily 
chosen reference time t r serve as standard fibers. The triviality of the bundles 
would allow one to define each bundle by a single global trivialization 
[factorization like (2.1)], in which case G would be trivial. However, this 
would single out a particular isomorphism of, say, input spaces at different 
times. Such an identification is avoided here, because nonsimultaneous input 
operations are regarded as different, as one does with nonsimultaneous events 
in relativity. The dual statements hold for the outtake operations. 

For the definition of/2" note that we restrict ourselves to global trivializa- 
tions. In quantum mechanics such a trivialization is called a picture. A 
connection "rr transports a ket ItS) ~ I(t~) at time tl into kets "IT(t2, tl)]~/) E 
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I(tz) at other times tz, dually a bra (q~l e I(tl) into (q~LTr(tl, t2) e I~ and 
has the composition property 

"if(t3, t l )  = "if(t3, t2)Tr(t2, t l )  (2 .2)  

A connection 7r induces the following picture isomorphisms o n / T  and l~  

B(rr): /T  ---> I(tr) • T 

ItS) e I(t) ~ (']T(tr, ~;)lkl/), t) = :  (I~)~T' $) = :  Ill/, t)  xr 
(2.3) 

B(Tr): l ~  ---> I~ • T 

(q~l ~ I(t) ~ t r ) ,  = :  = :  

where tr is the arbitrarily chosen reference time. (l~J, t) and (~p, t l are not 
functions of time. t just denotes at which time the input and outtake operations 
are to be performed.) Let xr and ~ be arbitrary connections. For fixed t, ~(t~, t) 
o "rr(t, tr) is a transition function (e.g., Nash and Sen, 1983) of the bundle 
/T. The structure group G o f / T  consists of the transition functions at the 
various times between the various pictures B(~r) and B(~), 

G = {~(t~, t)Tr(t, tr) } (2.4) 

Dually, ~r(tr, t) o ~(t, t~) are the transition functions of the bundle l ~  and 
form a structure group isomorphic to G. Below we shall use trivial fiber 
bundles over (a subset of  a power of) T, with standard fibers built by tensor 
products of I and I ~ and with the same structure group G. A ket (bra) 
connection induces a picture of  such a bundle similarly as the picture of  the 
ket and bra bundles were constructed in equation (2.3). 

A many-time linear operator 

O = {O(t), t e T} (2.5) 

is a section of the fiber bundle 

,~T = U I(t) @ ID(t) (2.6) 
tET 

A classical time variable t is a map 

t: T--+ R 

It induces the map 

t: 

t ~ t' = t(t) (2.7) 

/ T ~ / T  

~ i(t) ~ tl+):= t(0[+) e I(t) 

and dually for the bra vectors. 

(2.8) 
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The derivative of a many-time operator O with respect to a time variab]e 
t and a connection is the covariant derivative 

In the picture B('rr) a many-time operator 0 and a connection ~ are 
represented by 

01r(t)  = 'rr(tr ,  t )O(t)q-r( t ,  t r )  , 

E ~ ( t r )  - -  / ( t r )  @ I D ( t r )  

~lr(t2, tl) = 'ff(tr, t 2 ) ~ ( t 2 ,  t l ) ' f f ( t l ,  tr) 

(2.10) 

For small time steps from t 1 to t 2 we can write 

i 
~'~(t:t' + At ' ,  t:t') = 1 - -; F(~)t '~( t ' )At '  

n 
(2.11) 

F(~) t,~ is the connection coefficient of ~ with respect to the time variable t 
and with respect to the picture B('rr). The coefficient of the connection "rr 
vanishes in the picture B(~r), 

~ = 1, F(w) t,~ = 0 (2.12) 

The picture representation of equation (2.9) is 

O(t:t ')  = -d~ \ dt  + h [r(~)t'~(t')' O(t:t')~] (2.13) 

The propagation process between the input and outtake operations is 
represented by a connection U (Asorey et al., 1982). U, the associated covari- 
ant derivative, and the picture B(U) (which is the usual Heisenberg picture) 
are called dynamical. We assume a positive-definite metric of the ket spaces. 
The associated adjoint operator t maps kets into bras, and vice versa, and 
is antiunitary, 

r 
(t~l ~ ID(t) ~ 10) E I(t) (2.14) 

t 
(t~]q~) = (q~lt~)* ~ (tp]t~) (2.15) 

ItS) and (t~l, as well as the operations they represent, we call adjoint to one 
another. The transition of a quantum system from an input phase of an 
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experiment to the adjoint outtake phase is compulsory. Higher order tensors 
transform according to the scheme 

I(t2) @ [D(tl) ~ I(tl) ~ ID(t2) 

O* = (0~)* lam)(b~t ~ 0 = O~,,lbn)(aml (2.16) 

The dynamical connection is assumed to be unitary 

U(t2, tl)tU(tz, tl) = 1 (2.17) 

We restrict ourselves to unitary pictures B('rr), which correspond to unitary 
connections xr. A ket and its adjoint bra at some time then are represented 
by a ket and its adjoint bra at the reference time tr. This means that the 
many-time adjoint operation is represented by the restriction of -~ on I(tr) 
and I(tr) D, 

t~(t) = ~(t,) (2.18) 

The structure group, equation (2.4), then is the group of unitary operators 
on I(tr), 

G -- {u E I(t~) | P(tr)lU*"r)U = 1} =:  OR (2.19) 

3. DIACHRONIC LANGUAGE OF QUANTUM MECHANICS 

All the considered experiments shall occur during a time interval 
[ti, t/]; we restrict the time axis accordingly, 

T = [ti, ty] C R (3.1) 

With respect to a useful time variable t this interval has the length 

T' = t(tf) - fit;) (3.2) 

We start an experiment on a quantum system by preparing the system at 
some time tr (input operation) and end it by testing for a particular system 
property (output operation) at some time tN. At intermediate times tn we may 
act with filters on the quantum system, which are represented by projectors 
p (p, = p = p2), or we may shift the quantum system with respect to a 
particular quantum variable (e.g., by adding an additional particle (or excita- 
tion) to the experimental region or by absorbing one). Both kinds of acts are 
represented by elements of I(tn) | ID(tn). The passive act is represented by 
the unity operator. We restrict ourselves here to experiments that can be 
described in terms of a fixed number N - 1 of intermediate times t~, with 
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T!  
At" = t(t,) -- t(tn-1) < 2 -  (3.3) 

N 

(The number 2 on the right side could be replaced by any number independent 
of N and larger than 1. Here n is the index of the time step from tn- l to tn.) 
We choose the number N of time steps so large that our restriction is not 
severe. The sequence of direct acts of the experimenter, viz. input operation, 
intermediate acts, and outtake operation, is an example of a coprocess and 
is represented by an element or in the coprocess space, 

O" = (q3(tU) I @ O x _ l ( t U - 1 )  @ " '"  @ O l ( t l )  @ Illl(to)) (3.4) 

HDT u+l : =  CJ /D(zN) 
Zn E T lt(zn)-t(z n -  1)<2 T'/N 

| " '" | l(zl) | ID(zl) | l(z0) (3.5) 

(tO, tl, etc., do not denote a functional dependence of I tb(to)), O1(tl), etc., but 
just the times to which the ket, the linear operator, etc., are attached.) 

For a particular sequence of act times t, we represent a possible propaga- 
tion process by a tensor product 

"rr = ~(tN, tu-1) | " '" | ~r(tl, tO) (3.6) 

e I I T  x+l : =  [..J I(ZN) 
Zn ETI t(Zn)-- t(Zn- 1)<2 T'IN 

| "'" | ID(z0 @ l(zl) Q ID(z0) (3.7) 

[Compare with Finkelstein's path tensor (1995, w or process stator 
(1972b, p. 2931).] 

A "quantum frame" a is a system of orthogonal bases { la ' ,  t)}, 

{a", t la ' ,  t) = 8a,,~, (3.8a) 

of the ket fibers at different times, the dual bra bases, and the induced product 
bases of the fibers of the process and coprocess spaces. The induced bases 
have the elements 

oL(a'(N), tU . . . . .  a(2), a'(1), q, a(1), tO) 

N 
"= | ]~ [a'(n), t,)(a(n), t,_~ I ~ II(t/v . . . . .  tO) (3.8b) 

n=l 

c~D(a'(N), tN . . . . .  a(2), a'(1), h,  a(1), to) 

N 
�9 = ] ~  (a'(n), tn[ | [a(n), tn-1) E II~ . . . . .  to) (3.8C) 

n=l 
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Typically one uses basis vectors that are eigenvectors of a complete 
sequence of observables. One can interpret a basis process, equation (3.8b), 
as a succession of particular ways to annihilate and recreate the quantum 
system, a general process (represented in the process space l iT N+l) as a 
superposition of such successions. Mathematically this superposition property 
is represented by the linearity of the process space. There is becoming but 
no being; a quantum is not, it decays at one instant and (in our time-step 
approximation of propagation) reemerges at the next considered instant. The 
explicit representation (3.6) of the process  of propagation may prepare us for 
a joint quantization program of space-time and dynamics, such as suggested by 
Finkelstein (1972a,b, 1995). According to the cited program the concept of 
a system evolving in time is expressed by a quantum composition of quantum 
processes, such as elementary processes called chronons. 

A tensor product of a coprocess and a process tensor, such as 

cr | ~ = %(tN)[ | "rr(tN, tN-1) | ON-I(tN-~) 

| "'" | Ol(tl) | ~(q, to) | [0(to)) (3.9) 

represents an experiment completely. We call this description diachronic in 
the sense that it extends over many times. The transition amplitude (probability 
amplitude for the quantum system to pass from the input phase, via the 
propagation steps, through the medial acts into the outtake phase) is the 
tensor contraction 

cr-rr = Tr(cr | 70 (3.10) 

If the transition occurs, we say that the experiment had a positive result or 
that the process combination cr | "rr occurred. 

The activity of the experimenter affects the endosystem even during the 
propagation steps: she or he may control the experimental background such 
as the properties of an optically active medium in a polarization experiment 
or the value of an external field or source. Because there always is an 
experimental background, the separation of an experiment into a coprocess 
(direct acts of the experimenter) and a propagation process is not unique: a 
particle the experimenter adds or absorbs at an intermediate time tn could 
equivalently have been emitted or absorbed by an external source during the 
preceding propagation step. 

The concepts of input and outtake operations are related to the concepts 
of pre- and postselection (past and future measurements) developed by Aharo- 
nov and Vaidman. They showed (Aharonov et al., 1990) how superpositions 
of propagation processes (3.6) may arise when the system under investigation 
is coupled to a second system: a system influenced by an external system 
effectively evolves under a superposition of different connections. Further- 
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more (Aharonov and Vaidman, 1991), in terms of their language, they let a 
quantum system 1 be pre- and postselected in a superposition of product 
states with a second system 2; as far as system 1 is concerned, the pre- and 
postselection effectively can be described by a superposition of tensor prod- 
ucts of a system-l-ket at the initial and of a system-l-bra at the final time 
of the experiment. This is an example of a superposition of coprocesses of 
the product type (3.4). 

4. DIACHRONIC QUANTUM ACTION PRINCIPLE 

The diachronic dynamical principle we envision (in particular for a 
fundamental quantum theory of space-time and matter) is a principle for 
quantum processes that takes on the same form in different quantum frames. 
Such a form-invariant dynamical principle does not single out an absolute 
frame. The absence of the latter is a relativity without correspondence in 
classical physics, called transformation theory by Dirac and quantum relativity 
by Finkelstein (1995, w w A "quantum-tensor" is an object that 
transforms tensorially under a change of quantum frame. An example is a 
process tensor, which represents quantum processes. On the playground of 
quantum mechanics, process tensors are elements of the bundle IIT N§ A 
quantum frame e~ then consists of an orthogonal basis for each ket fiber, the 
dual bra bases, and the induced product bases for IIT u+t and the dual space 
IIDTN+I; see (3.8). A diachronic dynamical principle needs to determine the 
amplitudes (up to a normalization and phase factor) that a dynamical process 
has in a particular frame. 

The probability amplitude of an experiment is the contraction of a process 
with a coprocess tensor; see equation (3.10). Let the experimenter be passive 
at the intermediate times so that the coprocess tensor carries identity operators 
at these times. Then, only the basis elements 

a(a(N), tu . . . . .  a(2), a(2), tl, a(l), to) E II(tN . . . . .  to) (4.1) 

for which the a(n + 1) are equal to the a'(n), have nonvanishing trace 
and can contribute to the transition amplitude. Following Finkelstein (1995, 
w we call these processes unbroken, the other ones broken. Now 
consider a basis system 13 for the process system that has been constructed 
out of other orthogonal ket bases {It, b')} and their dual bra bases. A 
superposition of unbroken oL processes generally involves broken processes 
when expanded in the basis system 13. Hence, the principle of quantum 
relativity forces us to include broken processes in the formulation of dia- 
chronic quantum mechanics (as we have done from the start in order to allow 
for arbitrary intermediate acts). 
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We quantize the classical action principle for paths by taking the dynami- 
cal process and a coprocess as the quantum analogs of the family of dynamical 
paths and a selection of a dynamical path, respectively. Accordingly the 
quantum action should be a linear operator on the process space, 

W: HT N+I ~ l-IT u+l 

"rr ~ W'rr (4.2) 

Let us call such a linear map a process operator. This concept of quantum 
action is suitable for a quantum theory in that it does not associate all quantum 
processes with well-defined action values. Similarly, input and outtake opera- 
tions do not generally specify values of the configuration variables. Momen- 
tum and configuration variables are linear operators that generate 
configuration and momentum displacements of input and outtake vectors. 
This generator concept will reappear in the diachronic action principle: there 
the variation of the new quantum action will generate variations of the 
dynamical process tensor. 

The quantum action will be expressed in terms of many-time configura- 
tion variables 

q = {ql . . . . .  qa} (4.3a) 

The configuration frame • consists of the configuration eigenkets and eigen- 
bras and their tensor products 

x(q'(N), tN . . . . .  q(2), q'(1), tl, q(1), tO) 

N 
"= | I-[ Iq:q'(n), tn)(q:q(n), t n - l [  E 1-I(t N . . . . .  tO) (4.3b) 

n=l 

xD(q'(N), tN . . . . .  q(2), q'(1), tl, q(1), tO) 

N 
"= 1-[ (q:q'(n), t,] Q [q:q(n), t.-l) ~ IID(tN . . . . .  tO) (4.3c) 

A process w is a superposition over basis processes, equation (4.3b), 
with different sequences of configuration values q(n) and q'(n), but with 
equal times tn. In order to achieve a more symmetrical representation of the 
configuration degrees of freedom and of time, we combine processes with 
different sequences of initial, intermediate, and final times zn into a section 
7r of the process space, 

q'f; TN+I = {(ZN . . . . .  zo) l t (Zn ) - t (Zn -1 )<2T~N}- - - ) I IT  N+I 

(ZN . . . . .  ZO) ~ fr(zN . . . . .  ZO) (4.4) 
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A coprocess ~r over times (tu . . . . .  tO) selects the process of the section at 
the same time sequence ( t  N . . . . .  tO), 

O" E I ~ D ( t N  . . . . .  tO) , O'71" ; - -  O'"/$(t N . . . . .  to) (4.5) 

A process operator acts on a process section by acting on the individual 
processes of the section. 

Say we set q'(n) equal to q(n + 1) in a configuration coprocess (4.3c). 
The intermediate acts at the intermediate times (t~ . . . . .  tN-I) then are filter 
operations represented by the projectors f q:q(n), tn)(q:q(n), tn I. Feynman 
called such an unbroken coprocess "an ideal measurement . . ,  performed to 
determine whether a particle has a path lying in a region of space-time." 
[Finkelstein (1995, w 12.5.2) pointed out that "a determination of the quantum 
path is complementary to a determination of the Hamiltonian of the quantum, 
which includes its mass and other couplings." We are aware of this problem 
of the quantum mechanical concept of position preparations or measurements. 
In the present paper quantum mechanics serves as a playground to develop 
a new notion of quantum action.] For the corresponding probability amplitude 
Feynman proposes the sum over paths in that region weighted by the exponen- 
tial of i times the action. 

The principle of quantum relativity forces us to include broken 
coprocesses into the coprocess space [compare with equation (4.1)ff], as we 
have done from the start. Feynman's principle, formulated in terms of unbro- 
ken paths only, next is used to express the dynamical process tensor, which 
includes broken configuration processes. From that expression we shall obtain 
the quantum action and the differential diachronic action principle. 

For an individual time step propagator Feynman's result yields, 

t~-l) - I lq:q'(n)" t,) dq'(n) U(t,, 

X e (i/h)W[• dq(n)(q:q(n), t , - l [  (4.6a) 

where we have absorbed the normalization factor into the action. The tensor 
of the dynamical process over N time steps is the tensor product of the 
propagators over the various time steps; see equation (3.6). Hence 

U(tN . . . . .  to) -- 1I dq'(n) dq(n) 
n=l  

X e (i/ti)W[x(q'(N)'tN'''''q(1)'q'(1)'tl'q(O)'tO)] 

• x(q'(N), tN . . . . .  q(2), q'(1), tl, q(1), to) (4.6b) 

Here the action is defined for unbroken and broken paths as the sum of single 
step actions of equation (4.6a). 
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We restrict ourselves to the fairly general Lagrangian 

1 L(t,  q, v) = ~ vm( t )v  - V(t,  q) - A( t ,  q)v +2 vA(t ,  q) (4.7a) 

with the matrix m being real, symmetric, and invertible, 

m* = m = m t, det m ~ 0 (4.7b) 

The action of equations (4.6) then is (Lee, 1981) 

W [ x ( q ' ( N ) ,  t:t(N) . . . . .  q(2), q'(1), t:t(1), q(1), t:t(0))] 

N { ~  d e t m ( t ( n - 1 ) )  
�9 = ~ - In 

.=l (27rih[t(n) - t(n - 1)]) d 

+ [q'(n) - q(n)]m(t (n  - 1))[q'(n) - q(n)] 
2[t(n) - t(n - 1)] 

A( t (n  - 1), q ' (n ) ) [q ' (n )  - q(n)] + [q'(n) - q(n)]A( t (n  - 1), q(n))  

2 

[t(n) - t(n - 1)]V(t(n - 1), q(n))} (4.8) 

The quantum action W is defined to be a process operator that is diagonal 
in the configuration frame • and possesses the actions of equation (4.8) as 
eigenvalues. Then W is a section of  the bundle of operators that act within 
the process fibers, 

W(tN . . . . .  to) 

N { ~ detm(t(t._~)) 
:= ~ - In 

n=l (27rih[t(tn) - -  t ( t n - l ) ] )  d 

+ [q(tn) -- ~ ( t  n-1) ]m(t ( t . -  1))[q(t.) - q( tn-1)]  

2[t(t.) - t(tn_l) ] 

_ {A(t ( tn-1) ,  q(t.))[q(tn) - | ~(t.-1)] 
2 

- -  q ( t n _ l ) ] A ( t ( t n _ l )  , q(tn--1)) + [q(tn) Q 
2 

-- [t(tn) -- t ( t n _ l ) ] V ( t ( t n _ l )  , q(tn--1))} (4.9) 
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Here we used two ways to act on II(tN . . . . .  to) with an ordinary linear 
operator a(tn) ~ /(tn) ~) ID(tn): 

a(t~) ~ . . .  | itn, *Xt~-,, ~1 | . . . . .  Z " "  | a(t)lt,, +><~,,-,, ~l |  

(4.10a) 

a(l;n) ~ ' ' "  @ ]tn+l, 0r ~l @ "'" := ~ ' ' "  @ Ito+,, a><tn, [3la(t.) |  
(4.10b) 

Formula (4.6b) of a dynamical process tensor is easily expressed in 
terms of the quantum action, 

U(tN . . . . .  to) -- e (ilh)w [I dq'(n) dq(n) 
n=l 

• x(q'(N), tu . . . . .  q(2), q'(1), tl, q(1), to) (4.11) 

From this we now derive a differential action principle for the process 
section U built out of the dynamical proceSses U(tN . . . . .  to). Under time 
and configuration displacements Bt(n), gq(n), and Bq'(n), n = 0 . . . . .  N, 
a process 

vr = ~ c . . .  | [q:q'(n), t:t(n)Xq:q(n), t:t(n - 1) I |  

II(t:t(N) . . . . .  t:t(0)) (4.12a) 

goes over into 

= ~, c ' "  | ]q:q'(n) + gq'(n), ~n)(q:q(n) + Bq(n), t-~_~ [ |  

E II(~N . . . . .  ~o) (4.12b) 

The displaced times ~ are defined to have time coordinate values t + Bt(n), 

~. = t:t(n) + gt(n) (4.13) 

We vary the action so that 

W ~  = Ww (4.14) 

In terms of the displaced time and configuration variables the varied action 
takes on the same form as the unvaried one does in equation (4.9), 
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m 

W(~N . . . . .  ~0) 

( @ detm(?(i._l)) 
"-- ~=1 ~ - In (2axih-~-(~-~ r ~--~n_l)])d 

+ 
< - - -  . . . .  6 - -  _ 

[~(~.) - ~(t._ O]m(t(t.-1))[q(tn) - -  q(*n--1)] 
2[t(in) - t(i.-1)] 

_ (A(~(~.), ~(t.))[~(~.)2 - | ~@n-1)] 

+ [~(i.) | - ~(t.-0]A(t(t.-0,2 ~(t .- l)))  

- -  I t ( i n )  - -  }(in-1)]V(i(in-1), q @ n - l ) )  

t(/.) = t(t.) - ~t(n), 

(4.15a) 

(Note that we have varied q and ~ differently.) Equation (4.6b) transforms into 

- i 
g( tN  . . . .  , -io) -- e (i/~)rv 1-71 dq ' (n )  dq(n)  

n = l  

• x(q'(N), ~N . . . . .  q(2), q'(1), tl, q(1), ~0) (4.16) 

(The variations of the eigenvalues could be dropped because the integral 
extends over all eigenvalues.) The variation of the dynamical process section, 

~U := U -  U (4.17) 

where 

hence is generated by the variation of the action, 

i 
~ U  --  -h ~ W U  (4.18) 

m 

~W:= W -  W (4.19) 

This equation not only holds for the kinematical variations considered so far, 
but also relates dynamical variations of U to the corresponding form variations 

~(t.) = q(t.) - ~q' (n) ,  ~(t . - , )  : q (~n--1)  - -  ~q(n)  (4.15b) 
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of W, expressed here in terms of variations of the functions m, A, and V that 
appear in the Lagrangian L. 

The section U represents the dynamical processes throughout the dura- 
tions of the experiments. ~W generates changes of a process at all times of 
the process. U, W, and their variations transform tensorially under changes 
of franae. Hence, equation (4.18) is a diachronic quantum-tensor equation. 
However, the quantum mechanical action is not quantum-relativistically 
invariant, in that it takes on a special form in the configuration frame X. We 
brought a nonquantum-relativistic law into a covariant form in order to 
obtain a candidate for the form of a quantum-relativistic law of fundamental 
processes 'rr. These processes "rr we suppose to underly the particle processes 
on a fixed background space-time. Then W is an operator on the fundamental 
process space that takes on the same form in different frames. The addition 
of different path amplitudes in quantum mechanics and of different virtual 
processes in field theory may be reminiscent of the linear structure of a 
fundamental process space. The limit to a field theory on a classical space- 
time structure then should be obtained via coherent states, some of whose 
parameters should be identifiable with space-time coordinates of the vertices 
of virtual processes. 

Equation (4.18) determines the amplitudes A(q'(N), tN . . . . .  q(2), q'(1), 
tl, q(1), to) of the dynamical processes in the configuration frame up to a 
common factor. In this frame equation (4.18) takes on the form 

A( . . . .  q(1) - ~q(1), t:t(0) - S t ( N ) )  - A (  . . . .  q(1), t:t(0)) 

i 
-- - (W[• . . . .  q(1) - ~q(1), t:t(0) - ~t(N))] 

h 

- W[• . . . .  q(1), t : t (O))] )A(  . . . .  q(1), t:t(0)) (4.20) 

This is easily integrated into 

A( . . . .  q(1), t:t(0)) -- Ao exp ~ W[X( . . . .  q(0), t:t(0))] (4.21) 

which agrees with equation (4.6b). 

5. P I C T U R E - I N D E P E N D E N T  S C H W I N G E R  A C T I O N  
P R I N C I P L E  

It is instructive to see how Schwinger's action principle is related to 
our diachronic one. The trace of the diachronic action principle, equation 
(4.18), is 

i 
~3U(tN, t0) -- ~ Tr(~WU)(*N, to) (5.1) 
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We shall let the final variations 8q'(n) of the nth time step be equal to the 
initial variation 8q(n + 1) of the (n + 1)th step. The contracted variation 
~U(tN, tO) then only depends on the endpoint variations St(0), ~q(1), St(N), 
and 8q'(N). Hence the right side of equation (5.1) also does not depend on 
~t and 8q at intermediate times. This condition will yield equations of motion. 

Let us expand the kinematical variation of  the action W(n) over a single 
time step n to the first order in 8t(n - l), ~q(n), ~t(n), and 8q'(n), 

ihd 
~W(n) = 2[t(tn) - t(tn-0] 

[ q ( t . )  - ~ ~- q(t,_ t)]m(t(t,- l))[q(tn) -- q (tn-1)] + 
2[ t (O - t(t._~)] 2 

+ V(t(tn_l) , q(tn-l))} 

• [St(n) - ~t(n - 1)] 

+{~Tr[rh( t ( t ,_ , ) )m- ' ( t ( t ,_ , ) )  

[ q ( t . )  - ~ ( t n _  0 ] m ( t ( t , , - t ) ) [ q ( t . )  - -  ~ ( t . _  0 ]  

2[t(t.) -- t(tn-0] 

+ A(t( ,n_l) ,  q(tn))[q(tn) -- ~ q(tn--l)] 

[ q ( t . )  | - ~- " ~- q(t~_ 0]A(t(t._ t), q(t._ ~)) + 
2 

+ [t(t.) - t(t._l)]l?(t(t.-1), q(t.-1)) ~t(n - 1) 

+ .~ [q(~,,) - ~ ( t . _ , ) ]  
m(t(~n- ~)) 

{ t ( t ,O - t ( ~ . _ ~ ) ]  

+ A(t(tn_l), q(tn)) +2A(t(t._l), q(t"-0)][~q'(n)j~ 
8q(n)] 
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+ ~q ' (n)  OqA(t(tn-1), q(tn))[q(tn) -- Q q(tn-1)] 
2 

+ ~[q(t,) | - ~(tn_l)]OqA(tQ;n_l), ~ ( t n - 1 )  ) 

L 2 

+ [t(tn) - t( tn-1)]OqV(t(tn-l) ,  q(tn--1)) 8q(n)  (5.2) 

We sum over the different time steps, act on the dynamical process section 
U, take the trace, and set 8q ' (n )  = 8q(n + 1) for n = 1 . . . . .  N - 1. The 
result Tr(~WU) must not depend on the intermediate variations St(n) and 
~q ' (n)  = 8q(n  + 1) with n = 1 . . . . .  N - 1. For large N the consequent 
dynamical equations take on the form 

-fft v 1 ih Tr[rhm -l]  - [qy, qt, �9 A- V q- Av__q- vA 
d H --  - -~  (h,uthLh, u + 2[t(tn) - t(tn-1)] 2 

1 i h d -  [q J, -k qt,umkj] 
H := ~ (h, umLh, v + V - 2[t(t,) - t(tn-l)] (5.3a) 

d OqAv + vOqA 
~ p : =  - O q V  2 

p := qt.um - A (5.3b) 

[When q and ~ act as process operators--see (4.10)--quadratic expressions 
of them are effectively time ordered, whereas a quadratic expression of  the 
ordinary operators qt, u is not time ordered when expressed in terms of  q(tn-1) 
and q( tn) .  The commutators of q with (lt, v originated from this difference.] 
The total time derivatives that appear here are covariant derivatives [see 
equation (2.9)] with respect to the dynamical connection, which for large N 
is well represented by the dynamical process tensor U. Up to boundary terms 
of order 8 t /N  and ~ q ' / N  we find 

Tr(SWU)(tN, to) 

- [H( tN)S t (N  ) -- p(~N)Sq ' (N)]U(tN,  to) 

-- U( tu ,  to)[O(to)~t(0) - p(to)Sq(0)]] (5.4.) 

According to (4.12), the configuration matrix elements of the variation 
of the time evolution operator are 



2 3 9 0  M a n t k e  

(q:q(N), t:t(N) l~U(t:t(N), t:t(O))lq:q(O ), t:t(0)) 

= (q:q(N) - ~q'(N), t:t(N) - at(N) I 

• U(t:t(N) - St(N), t:t(O) - ~t(O)) 

]q:q(0) - ~q(0), t:t(0) - St(0)) 

- (q:q(N), t:t(N)[U(t:t(N), t:t(0))[q:q(0), t:t(0)) 

=: 8(q:q(N), t:t(N)[ U(t:t(N), t:t(O))lq:q(O), t:t(0)) (5.5) 

The matrix elements of equation (5.1) hence are 

~(q:q(N), tNI U(tN, to)[q:q(0), to) 

. i 
(q:q(N), tNITr(~WU)(tN, to)lq:q(0), to) (5.6) 

Together with equation (5.4), this implies the canonical commutation relations 

[pj, qk] -- - i h ~ ,  j,  k = 1 . . . . .  d (5.7) 

and the Heisenberg equations, 

�9 i 
(h,u = ~ In, q] (5.8) 

The canonical commutation relations imply the following commutation 
relation between the velocities and the configuration variables: 

[~v ,  q J] - - ihm- lkJ ( t )  (5.9) 

Using this, we simplify (5.3a) into 

~ v  1 Av  + vA 
d H -- - ~  4t, vthdh,v + f" + 2 

1 
H = ~ 4,,vm4,,v + V (5.10) 

We now can see [compare with DeWitt's derivation of the Schwinger action 
principle at the end of DeWitt (1957)] that Tr(gWU)(tN,  to) is equal to the 
variation of the picture-independent form of the Schwinger action (Schwinger, 
1960, 1970; Mantke, 1992), 3,4 

3Schwinger includes time variations in the class of dynamical changes, whereas we call 
variations of time kinematical, as we do with variations of configuration. 

4Note that Mantke failed to notice that the picture-independent Schwinger action does not act 
linearly on the dynamical connection because of the square velocity term of the Lagrangian. 
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Yr(aWU)(l:N, to) ~" aWs[U](tN, tO) (5�9 

l 
t(tN) 

Ws[U](tyN, to) "= dt' U(tN, t:t')L(t, q, (h,u)U(t:t', to) (5.11b) 
Jr(to) 

Ws is a connection functional with values in I(~N) | ID(tO). As for W in 
equations (4.15), Ws is to be varied by replacing t (including dO and q with 

:= t - at(t) and ~ := q - aq(t) (5.11c) 

The endpoint variations in equation (5�9 we now express as 

at(0) = at(t(t,)), aq(0) = aq(t(to)) 

at(N) = ~t(t(tN)), 8q'(N) = aq(t(tu)) (5�9 

Combining equations (5�9 and (5.11 a), we arrive at the picture-independent 
form of the Schwinger action principle 

B(q:q(N), tX] U(tN, to) lq:q(0), to) 

�9 i 
= ~ (q:q(N), tul aWs[~(tN, t0) lq:q(O), to) (5.12) 

There is an alternative form to express the variations involved in equation 
(5.12): Let us express Ws, equation (5.11b), in terms of the variables t* = 
t + Bt(t) (including dt*) and q* = q + 8q(t). The resulting form variation 
of Ws is equal to ~Ws. Similarly, the variation of the transition amplitude 
results from replacing eigenvectors I q:q', t:t') of t and q by eigenvectors 
I q*:q', t*:t') of t* and q* with equal eigenvalues. 

We have shown how the diachronic action principle implies the picture- 
independent form of the Schwinger action principle for kinematical variations. 
A similar derivation holds for dynamical variations. (The dynamical variation 
of the transition amplitude is the matrix element of the dynamical variation 
of the evolution operator. The dynamical variation of the action is the form 
variation which represents the change of dynamics.) 

6. CONCLUSIONS 

Feynman's integral action principle is diachronic because the paths in 
terms of which it is formulated are concepts that extend throughout the time 
interval of the considered experiment; the principle is not quantum relativistic, 
because it considers unbroken paths only. After a change of quantum frame 
an unbroken path, or process in general, is expressed as a superposition of 
broken processes�9 Schwinger employed the Heisenberg picture to formulate 
his differential action principle. Thus his principle is not diachronic, in that 
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it does not involve an explicit representation of the dynamical process during 
an experiment. The Schwinger action principle transforms covariantly when 
we pass from the configuration frame to another frame. (We keep the matrix 
of that transformation constant as we vary the configuration eigenvectors. 
Their variations then transform into the appropriate variation of the new 
basis vectors.) 

The diachronic quantum action principle combines the diachronic feature 
of Feynman's principle with the quantum covariance of Schwinger's. Only 
the endpoint variations of the configuration and time coordinates affect the 
transition amplitude, so that the Schwinger action principle and its picture- 
independent formulation assign no experimental meaning to the intermediate 
variations of the variables. The diachronic action principle remedies this: the 
variation of the quantum action generates the displacements of the dynamical 
process at all times of the process. 

The form of the diachronic action principle is a candidate form for the 
dynamical law of a theory without a classical time parameter. Our action 
acts on quantum processes as a linear operator and the variation of  the action 
generates variations of dynamical processes. This approach appears to be 
applicable to a theory of fundamental processes, such as Finkelstein's 
(1972a,b, 1995) chronons, which we suppose to underly our concept and 
experience of particle processes. 
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